Production of large unilamellar vesicles by a rapid extrusion procedure: characterization of size distribution, trapped volume and ability to maintain a membrane potential.

نویسندگان

  • M J Hope
  • M B Bally
  • G Webb
  • P R Cullis
چکیده

A technique for the rapid production of large unilamellar vesicles by repeated extrusion under moderate pressures (≤ 500 lb/in²) of multilamellar vesicles through polycarbonate filters (100 nm pore size) is demonstrated. In combination with freeze-thaw protocols where required, this procedure results in unilamellar vesicles with diameters in the range 60-100 nm and with trapped volumes in the region of 1-3 μl/μmol phospholipid. Advantages of this technique include the absence of organic solvents or detergents, the high lipid concentrations (up to 300 μmol/ml) that can be employed and the high trapping efficiencies (up to 30%) that can be achieved. Further, the procedure for generating these 'LUVET's' (large unilamellar vesicles by extrusion techniques) is rapid (≤ min preparation time) and can be employed to generate large unilamellar vesicles from a wide variety of lipid species and mixtures. As a particular illustration of the utility of this vesicle preparation, LUVET systems exhibiting a membrane potential (ΔΨ) in response to a transmembrane Na⁺/K⁺ gradient (K⁺ inside) have been characterized. By employing the lipophilic cation methyltriphenylphosphonium (MTPP⁺) it is shown that a K⁺ of diffusion potential (ΔΨ < -100 mV) forms rapidly in the presence of the K⁺ ionophore valinomycin for soya phosphatidylcholine (soya PC) LUVET's. The values of Δψ obtained correlate well with the K⁺ concentration gradient across the membrane, and it is demonstrated that the decay of Δψ with time depends on the flux of Na+ into the vesicles.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Lipidic composite vesicles based on poly(NIPAM), chitosan or hyaluronan: behaviour under stresses

Giant Unilamellar Vesicles (GUVs) consisting in self-closed lipid bilayers of 0.5-100 µm diameter are considered as oversimplified models of cells because of their biological membrane and micrometric size while Large Unilamellar Vesicles (LUVs) of 100-500 nm diameter have applications in drug delivery. To improve structural and mechanical properties of these vesicles, we have developed two cate...

متن کامل

Lipidic composite vesicles based on poly(NIPAM), chitosan or hyaluronan: behaviour under stresses

Giant Unilamellar Vesicles (GUVs) consisting in self-closed lipid bilayers of 0.5-100 µm diameter are considered as oversimplified models of cells because of their biological membrane and micrometric size while Large Unilamellar Vesicles (LUVs) of 100-500 nm diameter have applications in drug delivery. To improve structural and mechanical properties of these vesicles, we have developed two cate...

متن کامل

Nanoparticles Retention Potential of Multichannel Hollow Fiber Drinking Water Production Membrane

This study aims to investigate the potential of nanoparticle retention of ultrafi ltration (UF) multichannel hollow fiber membrane. Filtration experiments of fl uorescent silica nanoparticles (NPs) (10 and 100 nm) and CdTe quantum dots (1.5 nm) suspensions were carried out under diff erent operating conditions to analyze the retention rate (RT), the fouling zone and the...

متن کامل

Influence of vesicle size on complement-dependent immune damage to liposomes.

Complement-dependent antibody-mediated damage to multilamellar lipid vesicles (MLVs) normally results in a maximum release of 50-60% of trapped aqueous marker. The most widely accepted explanation for this is that only the outermost lamellae of MLVs are attacked by complement. To test this hypothesis, complement damage to two different types of large unilamellar vesicles (LUVs), large unilamell...

متن کامل

Generation of large unilamellar vesicles from long-chain saturated phosphatidylcholines by extrusion technique

Extrusion of multilamellar vesicles under moderate pressures through filters of defined pore size is a convenient method for generation of large unilamellar vesicles of variable size (Hope et al, (1986) Chem. Phys. Lipids 40, 89-108). To date, this technique has been applied primarily to unsaturated phosphoUpids in the liquid-crystalline state. In this work we extend this procedure to include s...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Biochimica et biophysica acta

دوره 812 1  شماره 

صفحات  -

تاریخ انتشار 1985